FAST SEMANTIC SEGMENTATION OF 3D POINT CLOUDS WITH STRONGLY VARYING DENSITY
نویسندگان
چکیده
منابع مشابه
SEGCloud: Semantic Segmentation of 3D Point Clouds
3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level...
متن کاملSemantic Segmentation of Indoor Point Clouds Using Convolutional Neural Network
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on framewor...
متن کاملSegmentation of building models from dense 3D point-clouds
This paper proposes an approach for the detection and partition of planar structures in dense 3D point clouds from facades. The aim is the creation of a polygonal model with a considerably lower complexity than the original data set. We perform a robust detection of the dominant facade planes and apply a sweep based scheme in order to detect structures like windows, doors, balconies in those pl...
متن کامل3d Object Segmentation of Point Clouds Using Profiling Techniques
In the automatic processing of point clouds, higher level information in the form of point segments is required for classification and object detection purposes. Point cloud segmentation allows for the definition of these segments. Various algorithms have been proposed for the segmentation of point clouds. The advancement of Lidar capabilities has resulted in the increase in volumes of data cap...
متن کامل3d Segmentation of Unstructured Point Clouds for Building Modelling
The determination of building models from unstructured three-dimensional point cloud data is often based on the piecewise intersection of planar faces. In general, the faces are determined automatically by a segmentation approach. To reduce the complexity of the problem and to increase the performance of the implementation, often a resampled (i.e. interpolated) grid representation is used inste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2016
ISSN: 2194-9050
DOI: 10.5194/isprs-annals-iii-3-177-2016